通信工程系

付澍

7D859

姓名:付    

职称/职务:副教授/研究生导师

邮箱:shufu@cqu.edu.cn

工作单位:bat365在线平台

个人简介:

付澍,男,博士,中国通信学会会员,中国电子学会物联网青年专技组委员、信息物理社会可信服务计算教育部重点实验室“工业互联网研究所”副所长、国家自然科学基金通信评议专家,重庆市科委自然科学基金评议专家,重庆市产学研合作促进会成员,bat365中文官方网站竞标评审专家。2016年6月博士毕业于电子科技大学通信抗干扰国家级重点实验室,同年9月进入bat365中文官方网站通信工程学院工作。2013年9月至2014年9月于天津大学计算机学院访学。2014年9月至2015年9月于加拿大滑铁卢大学博士联合培养。2019年2月至5月于加拿大瑞尔森大学任短期助理研究员。曾受邀于2020年IEEE Vehicular Technology Chapter of IEEE Toronto Section、2020年第十一届中国卫星导航年会、2021年及2022年IEEE ICCT等国内外会议作特邀报告。担任IEEE国际会议EAI International Conference on Game Theory for Networks 2022年度General Co-Chair,并常年担任IEEE Globecom、IEEE ICC等国际会议的TPC Member。

现已发表论文60余篇、授权发明专利6件。其中,近五年以一作或通讯作者在IEEE TWC、TCOM、TVT、WCM等通信领域SCI顶刊发表论文20余篇。现已主持并结题国家自然科学基金青年项目一项;主持并在研国家自然科学基金面上项目一项;主持横向项目经费累积200余万元,并长期与西安空间无线电技术研究所、中电54所、重庆星网等科研院所与公司保持长期合作。所指导的研究生曾获国家奖学金等荣誉,且多次在通信领域SCI顶刊发表论文。团队优秀的研究生可推荐至海外知名高校和团队继续攻博,或推荐至国内知名科研院所与公司工作。

在研项目:

[1] 国家自然科学基金委员会,面上项目,62271093,高时效无人机应急数据收集理论与机制研究,2023年1月至2026年12月,在研,主持;

[2] 民航飞行技术与飞行安全重点实验室,实验室开放研究基金,FZ2022KF16,星基增强系统可用范围预测及定位精度、完好性提升研究,2023年1月至2024年12月,在研,主持;

[3] 西安空间无线电技术研究所,横向项目,星间××××系统,2022年1月至2022年12月,在研,主持;  

[4] 中国卫星网络集团有限公司,横向项目,物联网××××算法,2022年12月至2023年3月,在研,主持; 

[5] 国家自然科学基金委员会,区域重点项目,U21A20448,山地大城市环境的电磁传输特性与网络优化理论与方法研究,2022年1月至2025年12月,在研,参与;

[6] 人工智能四川省重点实验室,实验室开放基金,2021RZJ03,无人机集群智能任务分配与自适应路由机制,2021年9月至2023年9月,在研,主持;

[7] 华为技术有限公司,横向项目,高能效类脑网络认知编码关键技术研究,2021年8月至2023年8月,在研,参与。

结题项目:

[1] 国网信通公司,横向项目,融合低轨卫星、北斗和 5G 的电力应急通信系统关键技术研究,2021年1月至2021年12月,结题,参与;

[2] 国家自然科学基金委员会,青年科学基金项目,61701054,超密集网络中基于服务器虚拟机的多点协作技术研究,2018年1月至2020年12月,结题,主持;

[3] 中华人民共和国教育部,中央高校基本科研业务费“学科交叉与团队建设专项项目”,2020CDJQY-A001,物联网的通信、安全、及传输一体化机制研究,2020年1月至2021年12月,结题,主持;

[4] 中华人民共和国教育部,中央高校基本科研业务费“学科交叉与团队建设专项项目”,2021CDJQY-013,智能光无线融合多址接入技术理论与实验研究,2021年1月至2022年12月,结题,主持;

[5] 国家级预研基金项目,人工智能技术行业应用研究(主题),61405180409,2019年1月至2020年12月,结题,参与;  

[6] 综合业务网理论及关键技术国家重点实验室,实验室开放研究基金,ISN21-07,空天地一体化中的存储与计算融合技术研究,2020年4月至2022年3月,结题,主持;

[7] 重庆市科学技术局,重庆市技术创新与应用发展专项5Gbat365中文官方网站主题专项,5G应用驱动的边缘计算网络技术研发及应用,cstc2019jscx-zdztzxX0023,2019年9月至2021年8月,结题,参与;

[8] 重庆市科学技术局,重庆市自然科学基金面上项目,基于时间敏感网络的超高可靠低时延移动前传网络关键技术研究,cstc2019jcyj-msxmX0375,2019年7月至2022年6月,结题,参与。

[9] 中华人民共和国教育部,中央高校基本科研业务费专项项目,106112017CDJXY160002,车载网络中的多点协作技术研究,2017年4月至2019年3月,结题,主持。

Technical Program Committee (TPC) Membership:

[1] IEEE Global Communications Conference 2017—2023

[2] IEEE International Conference on Communications 2017—2023

期刊评审人:

[1] IEEE Transactions on Mobile Computing

[2] IEEE Journal on Selected Areas in Communications

[3] IEEE Transactions on Wireless Communications

[4] IEEE Transactions on Communications

[5] IEEE Transactions on Vehicular Technology

[6] IEEE Internet of Things Journal

[7] IEEE Systems Journal

[8] IEEE Communications Surveys & Tutorials

[9] IEEE Wireless Communications

[10] IEEE Communications Magazine

[11] IEEE Network 

[12] IEEE Wireless Communications Letters

[13] IEEE Communications Letters

[14] Elsevier Computer Networks

[15] 通信学报

[16] 计算机学报

[17] 电子与信息学报

研究方向及代表作:

1B5G/6G超密集蜂窝网络的协同与多址传输理论

B5G/6G超密集蜂窝网络存储、计算、传输资源智能协同机制;基于凸优化、博弈论、深度强化学习的多址干扰管理;智能反射表面(RIS)协同的非正交多址(NOMA)技术。

代表作

[1] “Energy-efficient design of STAR-RIS aided MIMO-NOMA networks,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 498-511, 2023.(通讯)

[2] “Reconfigurable intelligent surface assisted non-orthogonal multiple access network based on machine learning approaches,” IEEE Network, submitted, pp. 1-7, 2023.(一作)

[3] “Albert-empowered task-oriented semantic communication with MaMIMO channels,” IEEE Transactions on Cognitive Communications and Networking, major revision, pp. 1-9, 2023.(员工一作,导师通讯)

[4] “Optimizing age of information in RIS-assisted NOMA networks: A deep reinforcement learning approach,” IEEE Wireless Communications Letters, vol. 11, no. 10, pp. 2100-2104, 2022.(员工一作,导师通讯)

[5] “Joint transmission scheduling and power allocation in non-orthogonal multiple access,” IEEE Transactions on Communications, vol. 67, no. 11, pp. 8137-8150, 2019.(一作)

[6] “Cooperative computing in integrated blockchain based internet of things,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1603-1612, 2020.(一作)

[7] “Interference cooperation via distributed game in 5G networks,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 311-320, 2019.(一作)

[8] “Power-fractionizing mechanism: achieving joint user scheduling and power allocation via geometric programming,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp. 2025-2034, 2018.(一作)

[9] “Transmission scheduling and game theoretical power allocation for interference coordination in CoMP,” IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 112 -123, 2014.(一作)

[10] “Virtualization enabled multi-point cooperation with convergence of communication, caching, and computing”, IEEE Network, vol. 34, no. 1, pp. 94-100, 2020.(一作)

[11] “Distributed transmission scheduling and power allocation in CoMP,” IEEE Systems Journal, vol. 12, no. 4, pp. 3096-3107, 2018.(一作)  

[12] “Energy-efficient pre-coded coordinated multi-point transmission with pricing power game mechanism,” IEEE Systems Journal, vol. 11, no. 2, pp. 578-587, 2017.(一作)

[13] “Green wireless cooperative networks,” A chapter of Green IT Engineering: Social, Business and Industrial Applications, Springer, ISBN: 978-3-030-00252-7, 41-71, 2016.(一作)

2)无人机辅助的网络智能应急服务理论

基于多维时效性的无人机智能应急服务机制;基于深度强化学习的无人机协同干扰管理;多无人机协同隐蔽通信;面向无人机协同的多智能体架构设计。

代表作

[1] “Joint power allocation and 3D deployment for UAV-BSs: A game theory based deep reinforcement learning approach," IEEE Transactions on Wireless Communications, major revision, pp. 1-13, 2023.(一作)

[2] “Caching placement optimization in UAV-assisted cellular networks: A deep reinforcement learning based framework,” IEEE Wireless Communications Letters, major revision, pp. 1-5, 2023.(员工一作,导师通讯)

[3] “Towards energy-efficient data collection by unmanned aerial vehicle base station with NOMA for emergency communications in IoT,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1211-1223, 2023.(一作)

[4] “Optimal hovering height and power allocation for UAV-aided NOMA covert communication system,” IEEE Wireless Communications Letters, vol. PP, no. 99, pp. 1-5, 2023.(员工一作,导师二作)

[5] “Minimizing the average AoI of UAV aided covert communication with a DRL framework,” IEEE Transactions on Wireless Communications, submitted, pp. 1-12, 2023.

[6] “Towards energy-efficient UAV-assisted wireless networks using an artificial intelligence approach,” IEEE Wireless Communications, vol. 29, no. 5, pp. 77-83, 2022.(一作)  

[7] “An energy efficient intelligent framework of UAV enhanced vehicular networks,” IEEE Vehicular Technology Magazine, vol. 17, no. 2, pp. 94-102, 2022.(一作)

[8] “Energy-efficient UAV enabled data collection via wireless charging: a reinforcement learning approach,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10209-10219, 2021.(一作)  

[9] “Joint 3D deployment and power allocation for UAV-BS: A deep reinforcement learning approach,” IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2309-2312, 2021.  (员工一作,导师通讯)

[10] “物联网数据收集中无人机路径智能规划,” 通信学报, 42(2): 124-133, 2021.(一作)

[11] “Joint unmanned aerial vehicle (UAV) deployment and power control for internet of things networks” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4367-4378, 2020.(一作)

3)基于低轨卫星互联网的星地协同理论

面向海量终端设备的星地多维资源协同分配机制;星地协同中的数据安全传输与用户公平性保障机制;星地传输中的飞艇中继与时间窗扩展机制;星地中继的用户分簇与多跳路由机制。

代表作

[1] “Collaborative Multi-Resource Allocation in Terrestrial-Satellite Network Towards 6G,” IEEE Transactions on Wireless Communications, vol. 20, no. 11, pp. 7057-7071, 2021.(一作)

[2] “Improving the system performance in terrestrial-satellite relay networks by configuring aerial relay,” IEEE Transactions on Vehicular Technology, vol. 70, no. 20, pp. 13139-13148, 2021.(员工一作,导师通讯)

[3] “Integrated Resource Management for Terrestrial-Satellite Systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3256-3266, 2020.(一作)

[4] “Multi-resources management in 6G-oriented terrestrial-satellite network,” China Communications, vol. 18, no. 9, pp. 24-36, 2021.(一作)

[5] “Dynamic scheduling for emergency tasks in space data relay network” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 795-807, 2021.(三作)

[6] “Dynamic user association for resilient backhauling in satellite–terrestrial integrated networks,” IEEE Systems Journal, vol. 14, no. 4, pp. 5025-5036, 2020.(三作)

[7] “Contact plan design with directional space-time graph in two-layer space communication networks,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10862-10874, 2019.(三作)

4)全光交换与传输理论

全光交换器组网的多域性能联合分析;低时延保障的WDM网络联合数据调度与路由机制;可见光通信的多址传输机制;低时延与高能效的光与无线跨网络协同传输机制。

代表作

[1] “Software defined wireline-wireless cross-networks: framework, challenges and prospects,” IEEE Communications Magazine, vol. 56, no. 8, pp. 145-151, 2018.(一作)

[2] “NOMA for energy-efficient LiFi-enabled bidirectional IoT communication,” IEEE Transactions on Communications, vol. 69, no. 3, pp. 1693-1706, 2021.(二作)

[3] “A Survey of underwater optical wireless communication,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 204-238, 2017.(二作,高被引)

[4] “Switch cost and packet delay tradeoff in data center networks with switch reconfiguration overhead,” Elsevier Computer Networks, vol. 87, pp. 33-43, 2015.(一作)

[5] “OFDM-Based Generalized Optical MIMO,” Journal of Lightwave Technology, vol. 39, no. 19, pp. 6063-6075, 2021.(三作)

[6] “Joint scheduling and routing for QoS guaranteed packet transmission in energy efficient reconfigurable WDM mesh networks,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 8, pp. 1533-1541, 2014.(二作)

[7] “Cross-networks energy efficiency tradeoff: from wired networks to wireless networks,” IEEE Access, vol. 5, pp. 15-26, 2017.(一作)

5)面向下一代网络的通信维度突破

对无线通信时域、频域、空域之外,新的信息承载方式的探索;基于数论的信源编码与信息压缩。

代表作

[1] “Data attachment: A novel type of wireless transmission,” IEEE Wireless Communications, vol. 26, no. 6, pp. 126-131, 2019.(一作)